기계시스템공학실험1

전자 저울의 원리 및 RLDA

교수: 오충석 [×7323, T443] 조교: 정상진/이명석 KIT

I. ㈜ 카스 (CAS)

• 역사

- 1983 설립(부국정밀기계)
- 1987 첫 전자저울 수출 (포르투갈)
- 1989 무역의 날 100만불 수출탑
- 1997 에밀레종 무게 잼 (18.9 tonf)
- 2000 전자저울 누적생산 100만대
- 2002 수출 1억불
- 2013 World Class 300 기업 선정
- 2019 A380 최초 계량
- 시장 점유율
 - 국내 70%, 미국 20%, 세계 20%

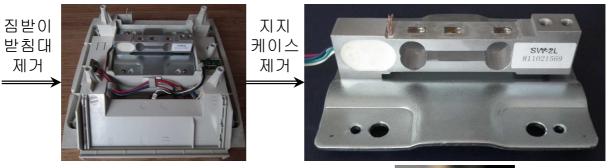
- 홈페이지
 - http://www.cas.co.kr/
- 홍보 영상 [07:51]
 - "We weigh the world."

MNTL

3

II. 전자저울의 원리

- 역공학 (Reverse Engineering)
 - 모델: CAS SW-02 (2009년)
 - 사양
 - 최대 중량 2 kgf
 - 가독성 1 gf
 - 분해능 1/2000
 - 외형 크기 260 (W) × 287 (D) × 137 (H) [mm]
 - 제품 무게 2.8 kgf
 - 디스플레이 LCD (5 자리)

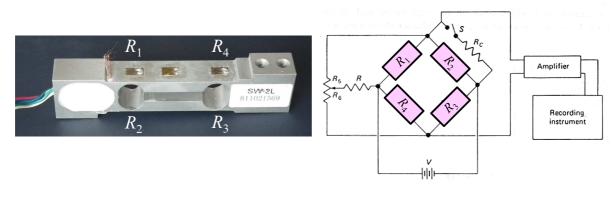

■ 분해 (Tear Down)

MNTL

5

로드셀 보호용 스토퍼

MNTL

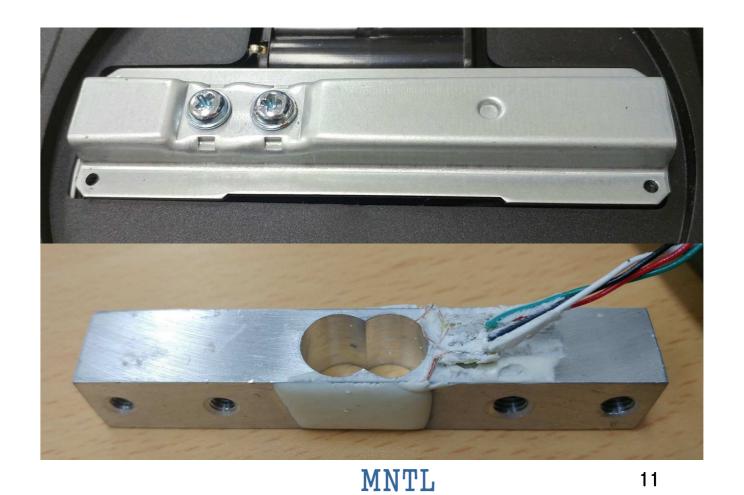


MNTL

7

■ 저항 값

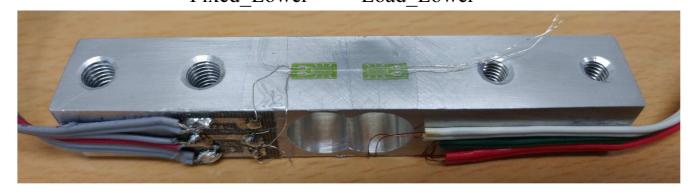
- Full Bridge: 굽힘 로드셀
- $R_1 \sim R_4 = R \approx 1,000 \,\Omega, \, S_{\rm g} = 2.0 \,($ 가정)



MNTL

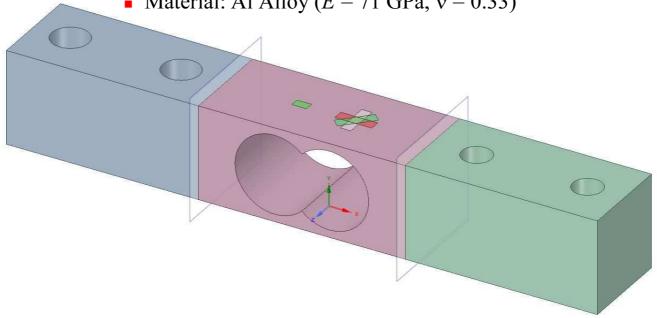
8

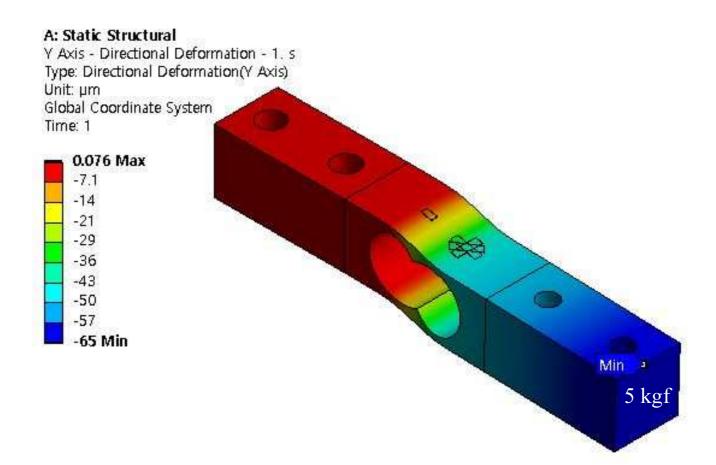
The Restriction of the use of certain Hazardous Substances in electrical and electronic equipment

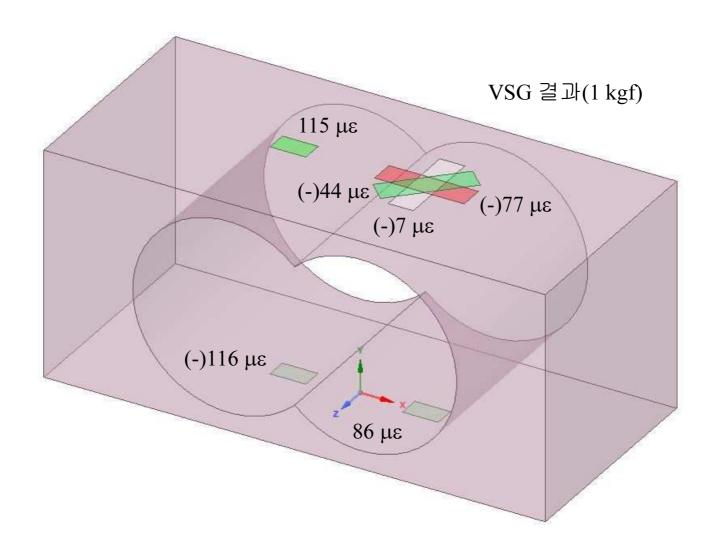

Fixed_Upper Load_Upper $R_{FU} = 992 \Omega$ $R_{LU} = 992 \Omega$

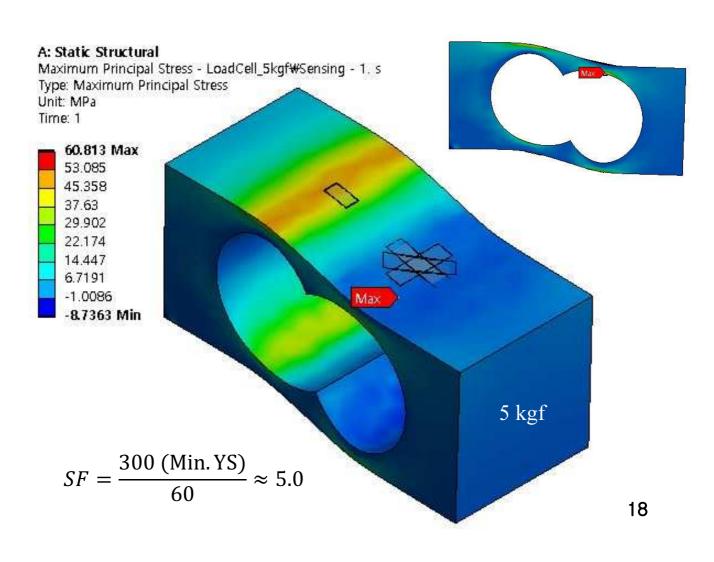
Fixed_Lower Load_Lower $R_{\rm F} = 992 \ \Omega \qquad R_{\rm LL} = 993 \ \Omega$

Fixed_Upper Load_Upper $GA = (5\times1.4) \text{ mm}^2, (120.0\pm0.8) \Omega, K = 2.13\pm1\%$

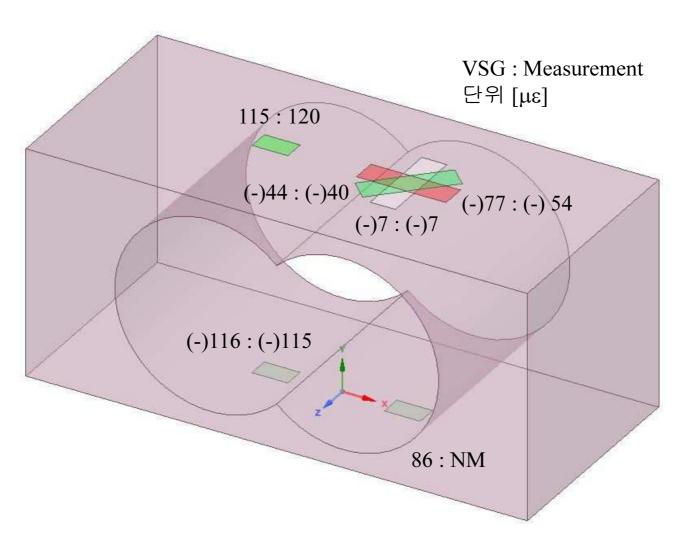

Fixed_Lower Load_Lower


GA = (2×1.2) mm², (120.2 ± 0.2) Ω , $K = 2.12\pm1\%$




Computation

- Geometry
- Material: Al Alloy (E = 71 GPa, v = 0.33)



IV. RLDA

- Road Load Data Acquisition (RLDA)
 - 도로 부하(하중) 데이터 획득
 - 수송 기계 설계 시 기초 데이터
- 필요한 장비
 - 각종 변환기(transducers) 및 증폭기(amplifiers)
 - 데이터 저장 장치(data logger)
- Proving Ground
 - 각종 수송 기계 가속 내구 시험 (실외)
 - Milbrook PG [04:20]

MNTL

21

- 자동차용 Field Test
 - Trailing Link, Rear Lateral Link, Strut & Spring

MNTL

- Ball Joint
- Disk Brake

MNTL

23

Road Simulation

- 목적
 - ▶ 가속 내구 시험(실내)
- 과정
 - 1) 각종 변환기 장착
 - 2) RLDA
 - 3) 데이터 편집: 무효 데이터 제거
 - 4) Road Simulator에 장착
 - 5) 입력: 편집된 Road 데이터
 - 6) 출력: RLDA 시 변환기를 통해 측정한 데이터
 - 7) 반복시험 및 검증

MNTL

25

V. 변환기 보정 방법

- 보정 (Calibration)
 - 각종 변환기 (transducers) 성능 평가
 - 변환기를 통한 실제 물리량 측정
- 보정 절차
 - 알고 있는 값 (x)과 변환기 출력 값 (y) 비교
 - y = f(x) = ax + b (가능한 한 직선 식)

변환기	X	y
로드셀	W	변형률, 앰프 출력
가속도계	а	변형률, 앰프 출력

- 변환기 출력 값 (y)을 통한 실제 물리량 (x) 측정
 - x = g(y) = cy + d (가능한 한 직선 식)

MNTL